Swirling the weakly bound helium dimer from inside


الملخص بالإنكليزية

Controlling the interactions between atoms with external fields opened up new branches in physics ranging from strongly correlated atomic systems to ideal Bose and Fermi gases and Efimov physics. Such control usually prepares samples that are stationary or evolve adiabatically in time. On the other hand, in molecular physics external ultrashort laser fields are employed to create anisotropic potentials that launch ultrafast rotational wave packets and align molecules in free space. Here we combine these two regimes of ultrafast times and low energies. We apply a short laser pulse to the helium dimer, a weakly bound and highly delocalized single bound state quantum system. The laser field locally tunes the interaction between two helium atoms, imparting an angular momentum of $2hbar$ and evoking an initially confined dissociative wave packet. We record a movie of the density and phase of this wave packet as it evolves from the inside out. At large internuclear distances, where the interaction between the two helium atoms is negligible, the wave packet is essentially free. This work paves the way for future tomography of wave packet dynamics and provides the technique for studying exotic and otherwise hardly accessible quantum systems such as halo and Efimov states.

تحميل البحث