The bi-conical vector model at $1/N$


الملخص بالإنكليزية

We study finite $N$ aspects of the $O(m)times O(N-m)$ vector model with quartic interactions in general $2leq d leq 6$ spacetime dimensions. This model has recently been shown to display the phenomenon of persistent symmetry breaking at a perturbative Wilson-Fisher-like fixed point in $d=4-epsilon$ dimensions. The large rank limit of the bi-conical model displays a conformal manifold and a moduli space of vacua. We find a set of three double trace scalar operators that are respectively irrelevant, relevant and marginal deformations of the conformal manifold in general $d$. We calculate the anomalous dimensions of the single and multi-trace scalar operators to the first sub-leading order in the large rank expansion. The anomalous dimension of the marginal operator does not vanish in general, indicating that the conformal manifold is lifted at finite $N$. In the case of equal ranks we are able to derive explicitly the scaling dimensions of various operators as functions of only $d$.

تحميل البحث