Cooperative nanoparticle self-assembly and photothermal heating in a flexible plasmonic metamaterial


الملخص بالإنكليزية

We theoretically investigate equilibrium behaviors and photothermal effects of a flexible plasmonic metamaterial composed of aramid nanofibers and gold nanoparticles. The fiber matrix is considered as an external field to reconfigure a nanoparticle assembly. We find that the heating process tunes particle-particle and fiber-particle interactions, which alter adsorption of nanoparticles on fiber surfaces or clustering in pore spaces. Thus, it is possible to control the nanoparticle self-assembly by laser illumination. Gold nanoparticles strongly absorb radiations and efficiently dissipate absorbed energy into heat. By solving the heat transfer equation associated with an effective medium approximation, we calculate the spatial temperature rise. Remarkably, our theoretical results quantitatively agree with prior experiments. This indicates that we can ignore plasmonic coupling effects induced by particle clustering. Effects of the laser spot size and intensity on the photothermal heating are also discussed.

تحميل البحث