In recent years, there has been an increasing interest in nanoelectromechanical devices, current-driven quantum machines, and the mechanical effects of electric currents on nanoscale conductors. Here, we carry out a thorough study of the current-induced forces and the electronic friction of systems whose electronic effective Hamiltonian can be described by an archetypal model, a single energy level coupled to two reservoirs. Our results can help better understand the general conditions that maximize the performance of different devices modeled as a quantum dot coupled to two electronic reservoirs. Additionally, they can be useful to rationalize the role of current-induced forces in the mechanical deformation of one-dimensional conductors.