Let $G = (V,w)$ be a weighted undirected graph with $m$ edges. The cut dimension of $G$ is the dimension of the span of the characteristic vectors of the minimum cuts of $G$, viewed as vectors in ${0,1}^m$. For every $n ge 2$ we show that the cut dimension of an $n$-vertex graph is at most $2n-3$, and construct graphs realizing this bound. The cut dimension was recently defined by Graur et al. cite{GPRW20}, who show that the maximum cut dimension of an $n$-vertex graph is a lower bound on the number of cut queries needed by a deterministic algorithm to solve the minimum cut problem on $n$-vertex graphs. For every $nge 2$, Graur et al. exhibit a graph on $n$ vertices with cut dimension at least $3n/2 -2$, giving the first lower bound larger than $n$ on the deterministic cut query complexity of computing mincut. We observe that the cut dimension is even a lower bound on the number of emph{linear} queries needed by a deterministic algorithm to solve mincut, where a linear query can ask any vector $x in mathbb{R}^{binom{n}{2}}$ and receives the answer $w^T x$. Our results thus show a lower bound of $2n-3$ on the number of linear queries needed by a deterministic algorithm to solve minimum cut on $n$-vertex graphs, and imply that one cannot show a lower bound larger than this via the cut dimension. We further introduce a generalization of the cut dimension which we call the $ell_1$-approximate cut dimension. The $ell_1$-approximate cut dimension is also a lower bound on the number of linear queries needed by a deterministic algorithm to compute minimum cut. It is always at least as large as the cut dimension, and we construct an infinite family of graphs on $n=3k+1$ vertices with $ell_1$-approximate cut dimension $2n-2$, showing that it can be strictly larger than the cut dimension.