We present a modified version of the L-GALAXIES 2020 semi-analytic model of galaxy evolution, which includes significantly increased direct metal enrichment of the circumgalactic medium (CGM) by supernovae (SNe). These more metal-rich outflows do not require increased mass-loading factors, in contrast to some other galaxy evolution models. This modified L-GALAXIES 2020 model is able to simultaneously reproduce the gas-phase metallicity $(Z_{rm g})$ and stellar metallicity $(Z_{*})$ radial profiles observed in nearby disc galaxies by MaNGA and MUSE, as well as the observed mass - metallicity relations for gas and stars at $z=0$ and their evolution back to $zsim{}2-3$. A direct CGM enrichment fraction of $sim{}90%$ for SNe-II is preferred. We find that massive disc galaxies have slightly flatter $Z_{rm g}$ profiles than their lower-mass counterparts in L-GALAXIES 2020, due to more efficient enrichment of their outskirts via inside-out growth and metal-rich accretion. Such a weak, positive correlation between stellar mass and $Z_{rm g}$ profile slope is also seen in our MaNGA-DR15 sample of 571 star-forming disc galaxies. Although, below ${rm log}(M_{*}/{rm M}_{odot})sim{}10.0$ this observational result is strongly dependent on the metallicity diagnostic and morphological selection chosen. In addition, a lowered maximum SN-II progenitor mass of $25{rm M}_{odot}$, reflecting recent theoretical and observational estimates, can also provide a good match to observed metallicity profiles at $z=0$ in L-GALAXIES 2020. However, this model version fails to reproduce an evolution in $Z_{rm g}$ at fixed mass over cosmic time, or the magnesium abundances observed in the intracluster medium (ICM).