Multiplicative Connections and Their Lie Theory


الملخص بالإنكليزية

We define and study multiplicative connections in the tangent bundle of a Lie groupoid. Multiplicative connections are linear connections satisfying an appropriate compatibility with the groupoid structure. Our definition is natural in the sense that a linear connection on a Lie groupoid is multiplicative if and only if its torsion is a multiplicative tensor in the sense of Bursztyn-Drummond [4] and its geodesic spray is a multiplicative vector field. We identify the obstruction to the existence of a multiplicative connection. We also discuss the infinitesimal version of multiplicative connections in the tangent bundle, that we call infinitesimally multiplicative (IM) connections and we prove an integration theorem for IM connections. Finally, we present a few toy examples. Along the way, we discuss fiber-wise linear connections in the tangent bundle of the total space of a vector bundle.

تحميل البحث