The dynamical vertex approximation for many-electron systems with spontaneously broken SU(2)-symmetry


الملخص بالإنكليزية

We generalize the formalism of the dynamical vertex approximation (D$Gamma$A) -- a diagrammatic extension of the dynamical mean-field theory (DMFT)-- to treat magnetically ordered phases. To this aim, we start by concisely illustrating the many-electron formalism for performing ladder resummations of Feynman diagrams in systems with broken SU(2)-symmetry, associated to ferromagnetic (FM) or antiferromagnetic (AF) order. We then analyze the algorithmic simplifications introduced by taking the local approximation of the two-particle irreducible vertex functions in the Bethe-Salpeter equations, which defines the ladder implementation of D$Gamma$A for magnetic systems. The relation of this assumption with the DMFT limit of large coordination-number/ high-dimensions is explicitly discussed. As a last step, we derive the expression for the ladder D$Gamma$A self-energy in the FM- and AF-ordered phases of the Hubbard model. The physics emerging in the AF-ordered case is explicitly illustrated by means of approximated calculations based on a static mean-field input for the D$Gamma$A equations. The results obtained capture fundamental aspects of both metallic and insulating ground states of two-dimensional antiferromagnets, providing a reliable compass for future, more extensive applications of our approach. Possible routes to further develop diagrammatic-based treatments of magnetic phases in correlated electron systems are briefly outlined in the conclusions.

تحميل البحث