In this paper, we study efficient differentially private alternating direction methods of multipliers (ADMM) via gradient perturbation for many machine learning problems. For smooth convex loss functions with (non)-smooth regularization, we propose the first differentially private ADMM (DP-ADMM) algorithm with performance guarantee of $(epsilon,delta)$-differential privacy ($(epsilon,delta)$-DP). From the viewpoint of theoretical analysis, we use the Gaussian mechanism and the conversion relationship between Renyi Differential Privacy (RDP) and DP to perform a comprehensive privacy analysis for our algorithm. Then we establish a new criterion to prove the convergence of the proposed algorithms including DP-ADMM. We also give the utility analysis of our DP-ADMM. Moreover, we propose an accelerated DP-ADMM (DP-AccADMM) with the Nesterovs acceleration technique. Finally, we conduct numerical experiments on many real-world datasets to show the privacy-utility tradeoff of the two proposed algorithms, and all the comparative analysis shows that DP-AccADMM converges faster and has a better utility than DP-ADMM, when the privacy budget $epsilon$ is larger than a threshold.