On-chip higher-order topological micromechanical metamaterials


الملخص بالإنكليزية

Higher-order topological insulators exhibit multidimensional topological physics and unique application values due to their ability of integrating stable boundary states at multiple dimensions in a single chip. However, for signal-processing applications in high-frequency mechanical systems, the current realizations of higher-order topological mechanical materials are still limited to large-scale systems for kilohertz or lower frequencies. Here, we report the experimental observation of a on-chip micromechanical metamaterial as higher-order topological insulator for high-frequency mechanical waves. The higher-order topological phononic band gap is induced by the band inversion at the Brillouin zone corner which is achieved by configuring the orientations of the elliptic pillars etched on the silicon chip. With consistent experiments and theory, we demonstrate the coexistence of topological edge and corner states in the megahertz frequency regime as induced by the higher-order band topology. The experimental realization of on-chip micromechanical metamaterials with higher-order topology opens a regime for applications based on megahertz mechanical waves in an integrated platform where the edge and corner states act as stable waveguides and resonators, respectively.

تحميل البحث