Quasiparticle self-consistent $GW$ band structures and high-pressure phase transitions of LiGaO$_2$ and NaGaO$_2


الملخص بالإنكليزية

Quasi-particle self-consistent $GW$ calculations are presented for the band structures of LiGaO2 and NaGaO2 in the orthorhombic $Pna2_1$ tetrahedrally coordinated crystal structures. Symmetry labeling of the bands near the gap is carried out and effective mass tensors are extracted for the conduction band minimum and crystal field split valence band maxima at $Gamma$. The gap is found to be direct at $Gamma$ and is 5.81 eV in LiGaO2 and 5.46 eV in NaGaO2. Electron-phonon coupling zero-point normalization is estimated to lower these gaps by about 0.2 eV. Optical response functions are calculated within the independent particle long wavelength limit and show the expected anisotropy of the absorption onsets due to the crystal field splitting of the VBM. The results show that both materials are promising candidates as ultrawide gap semiconductors with wurtzite based tetrahedrally bonded crystal structures. Direct transitions from the lowest conduction band to higher bands, relevant to n-type doped material and transparent conduction applications are found to start only above 3.9 eV and are allowed for only one polarization, and several higher band transitions are forbidden by symmetry. Alternative crystal structures, such as $Rbar{3}m$ and a rocksalt type phase with tetragonally distorted $P4/mmm$ spacegroup, both with octahedral coordination of the cations are also investigated. They are found to have higher energy but about 20 % smaller volume per formula unit. The transition pressures to these phases are determined and for LiGaO2 found to be in good agreement with experimental studies. The $Rbar{3}m$phase also has a comparably high but slightly indirect band gap while the rocksalt type phase if found to have a considerably smaller gap of about 3.1 eV in LiGaO2 and 1.0 eV in NaGaO2.

تحميل البحث