The bound-state solutions of the one-dimensional hydrogen atom


الملخص بالإنكليزية

The one-dimensional hydrogen atom is an intriguing quantum mechanics problem that exhibits several properties which have been continually debated. In particular, there has been variance as to whether or not even-parity solutions exist, and specifically whether or not the ground state is an even-parity state with infinite negative energy. We study a regularized version of this system, where the potential is a constant in the vicinity of the origin, and we discuss the even- and odd-parity solutions for this regularized one-dimensional hydrogen atom. We show how the even-parity states, with the exception of the ground state, converge to the same functional form and become degenerate for $x > 0$ with the odd-parity solutions as the cutoff approaches zero. This differs with conclusions derived from analysis of the singular (i.e., without regularization) one-dimensional Coulomb potential, where even-parity solutions are absent from the spectrum.

تحميل البحث