Near-maxima of the two-dimensional Discrete Gaussian Free Field


الملخص بالإنكليزية

For the Discrete Gaussian Free Field (DGFF) in domains $D_Nsubseteqmathbb Z^2$ arising, via scaling by $N$, from nice domains $Dsubseteqmathbb R^2$, we study the statistics of the values order-$sqrt{log N}$ below the absolute maximum. Encoded as a point process on $Dtimesmathbb R$, the scaled spatial distribution of these near-extremal level sets in $D_N$ and the field values (in units of $sqrt{log N}$ below the absolute maximum) tends in law as $Ntoinfty$ to the product of the critical Liouville Quantum Gravity (cLQG) $Z^D$ and the Rayleigh law. The convergence holds jointly with the extremal process, for which $Z^D$ enters as the intensity measure of the limiting Poisson point process, and that of the DGFF itself; the cLQG defined by the limit field then coincides with $Z^D$. While the limit near-extremal process is measurable with respect to the limit continuum GFF, the limit extremal process is not. Our results explain why the various ways to norm the lattice cLQG measure lead to the same limit object, modulo overall normalization.

تحميل البحث