Excitonic Effects in the Optical Spectra of Lithium metasilicate (Li2SiO3)


الملخص بالإنكليزية

The Li2SiO3 compound, a ternary electrolyte compound of Lithium-ion based batteries, exhibits unique geometric and band structures, an atom-dominated energy spectrum, charge densities distributions, atom and orbital-projected density of states, and strong optical responses. The state-of-the-art analysis, based on an ab-initio simulation, have successfully confirmed the concise physical/chemical picture and the orbital bonding in Li-O and Si-O bonds. Additionally, the unusual optical response behavior includes a large redshift of the onset frequency due to the extremely strong excitonic effect, the polarization of optical properties along three-directions, 22 optical excitations structures and the most prominent plasmon mode in terms of the dielectric functions, energy loss functions, absorption coefficients, and reflectance spectra. The close connections of electronic and optical properties can identify a specific orbital hybridization for each distinct excitation channel. The developed theoretical framework will be very appropriate for fully comprehending the diverse phenomena of cathode/electrolyte/anode materials in ion-based batteries.

تحميل البحث