In this paper we show that the strict and lax pullbacks of a 2-categorical opfibration along an arbitrary 2-functor are homotopy equivalent. We give two applications. First, we show that the strict fibers of an opfibration model the homotopy fibers. This is a version of Quillens Theorem B amenable to applications. Second, we compute the $E^2$ page of a homology spectral sequence associated to an opfibration and apply this machinery to a 2-categorical construction of $S^{-1}S$. We show that if $S$ is a symmetric monoidal 2-groupoid with faithful translations then $S^{-1}S$ models the group completion of $S$.