The strain field surrounding the center of low frequency vibrational modes is analyzed for numerically created binary glasses with a 1/r^10 repulsive interatomic potential. Outside the unstable inner core of five to twenty atoms, one finds a mixture of a motion similar to the string motion in the core with the strain field of three oscillating elastic dipoles in the center. The additional outside string motion contributes more to the stabilization of the core than the strain field, but the strain field dominates at long distances, in agreement with recent numerical findings. The small restoring force of the outside string motion places its average frequency close to the boson peak. The average creation energy of a soft mode in this binary glass is about 2.5 times the thermal energy at the freezing temperature. Scaling the soft potential parameters of the numerical modes to metallic glasses, one finds quantitative agreement with measurements of the sound absorption by tunneling states at low temperatures and by the excess modes at the boson peak.