A long standing mystery of fundamental importance in correlated electron physics is to understand strange non-Fermi liquid metals that are seen in diverse quantum materials. A striking experimental feature of these metals is a resistivity that is linear in temperature ($T$). In this paper we ask what it takes to obtain such non-Fermi liquid physics down to zero temperature in a translation invariant metal. If in addition the full frequency ($omega$) dependent conductivity satisfies $omega/T$ scaling, we argue that the $T$-linear resistivity must come from the intrinsic physics of the low energy fixed point. Combining with earlier arguments that compressible translation invariant metals are `ersatz Fermi liquids with an infinite number of emergent conserved quantities, we obtain powerful and practical conclusions. We show that there is necessarily a diverging susceptibility for an operator that is odd under inversion/time reversal symmetries, and has zero crystal momentum. We discuss a few other experimental consequences of our arguments, as well as potential loopholes which necessarily imply other exotic phenomena.