Balancing quarantine and self-distancing measures in adaptive epidemic networks


الملخص بالإنكليزية

We study the relative importance of two key control measures for epidemic spreading: endogenous social self-distancing and exogenous imposed quarantine. We use the framework of adaptive networks, moment-closure, and ordinary differential equations (ODEs) to introduce several novel models based upon susceptible-infected-recovered (SIR) dynamics. First, we compare computationally expensive, adaptive network simulations with their corresponding computationally highly efficient ODE equivalents and find excellent agreement. Second, we discover that there exists a relatively simple critical curve in parameter space for the epidemic threshold, which strongly suggests that there is a mutual compensation effect between the two mitigation strategies: as long as social distancing and quarantine measures are both sufficiently strong, large outbreaks are prevented. Third, we study the total number of infected and the maximum peak during large outbreaks using a combination of analytical estimates and numerical simulations. Also for large outbreaks we find a similar compensation effect as for the epidemic threshold. This suggests that if there is little incentive for social distancing within a population, drastic quarantining is required, and vice versa. Both pure scenarios are unrealistic in practice. Our models show that only a combination of measures is likely to succeed to control epidemic spreading. Fourth, we analytically compute an upper bound for the total number of infected on adaptive networks, using integral estimates in combination with the moment-closure approximation on the level of an observable. This is a methodological innovation. Our method allows us to elegantly and quickly check and cross-validate various conjectures about the relevance of different network control measures.

تحميل البحث