We consider the decomposition of bounded linear operators on Hilbert spaces in terms of functions forming frames. Similar to the singular-value decomposition, the resulting frame decompositions encode information on the structure and ill-posedness of the problem and can be used as the basis for the design and implementation of efficient numerical solution methods. In contrast to the singular-value decomposition, the presented frame decompositions can be derived explicitly for a wide class of operators, in particular for those satisfying a certain stability condition. In order to show the usefulness of this approach, we consider different examples from the field of tomography.