Chase-escape percolation is a variation of the standard epidemic spread models. In this model, each site can be in one of three states: unoccupied, occupied by a single prey, or occupied by a single predator. Prey particles spread to neighboring empty sites at rate $p$, and predator particles spread only to neighboring sites occupied by prey particles at rate $1$, killing the prey particle that existed at that site. It was found that the prey can survive with non-zero probability, if $p>p_c$ with $p_c<1$. Using Monte Carlo simulations on the square lattice, we estimate the value of $p_c = 0.49451 pm 0.00001$, and the critical exponents are consistent with the undirected percolation universality class. We define a discrete-time parallel-update version of the model, which brings out the relation between chase-escape and undirected bond percolation. For all $p < p_c$ in $D$-dimensions, the number of predators in the absorbing configuration has a stretched-exponential distribution in contrast to the exponential distribution in the standard percolation theory. We also study the problem starting from the line initial condition with predator particles on all lattice points of the line $y=0$ and prey particles on the line $y=1$. In this case, for $p_c<p < 1$, the center of mass of the fluctuating prey and predator fronts travel at the same speed. This speed is strictly smaller than the speed of an Eden front with the same value of $p$, but with no predators. At $p=1$, the fronts undergo a depinning transition. The fluctuations of the front follow Kardar-Parisi-Zhang scaling both above and below this depinning transition.