We study a product of null-integrated local operators $mathcal{O}_1$ and $mathcal{O}_2$ on the same null plane in a CFT. Such null-integrated operators transform like primaries in a fictitious $d-2$ dimensional CFT in the directions transverse to the null integrals. We give a complete description of the OPE in these transverse directions. The terms with low transverse spin are light-ray operators with spin $J_1+J_2-1$. The terms with higher transverse spin are primary descendants of light-ray operators with higher spins $J_1+J_2-1+n$, constructed using special conformally-invariant differential operators that appear precisely in the kinematics of the light-ray OPE. As an example, the OPE between average null energy operators contains light-ray operators with spin $3$ (as described by Hofman and Maldacena), but also novel terms with spin $5,7,9,$ etc.. These new terms are important for describing energy two-point correlators in non-rotationally-symmetric states, and for computing multi-point energy correlators. We check our formulas in a non-rotationally-symmetric energy correlator in $mathcal{N}=4$ SYM, finding perfect agreement.