Group-like small cancellation theory for rings


الملخص بالإنكليزية

In the present paper we develop a small cancellation theory for associative algebras with a basis of invertible elements. Namely, we study quotients of a group algebra of a free group and introduce three axioms for the corresponding defining relations. We show that the obtained ring is non-trivial. Moreover, we show that this ring enjoys a global filtration that agrees with relations, find a basis of the ring as a vector space and establish the corresponding structure theorems. We also provide a revision of a concept of Gr{o}bner basis for our rings and establish a greedy algorithm for the Ideal Membership Problem.

تحميل البحث