This paper represents a theoretical and an experimental study of the spreading dynamics of a liquid droplet, generated by a needle free deposition system called the liquid needle droplet deposition technique. This technique utilizes a continuous liquid jet generated from a pressurized dosing system which generates a liquid drop on a substrate to be characterized by optical contact angle measurements. Although many studies have explored the theoretical modelling of the droplet spreading scenario, a theoretical model representing the spreading dynamics of a droplet, generated by the jet impact and continuous addition of liquid mass, is yet to be addressed. In this study, we developed a theoretical model based on the overall energy balance approach which enables us to study on the physics of variation of droplet spreading under surrounding medium of various viscosities. The numerical solution of the non-linear ordinary differential equation has provided us the opportunity to comment on the variation of droplet spreading, as a function of Weber number ($We$), Reynolds number ($Re$) and Bond number ($Bo$) ranging from 0.5-3, 75-150, and 0.001-0.3, respectively. We have also presented a liquid jet impact model in order to predict the initial droplet diameter as an initial condition for the proposed governing equation. The model has been verified further with the experimental measurements and reasonable agreement has been observed. Experimental observations and theoretical investigations also highlight the precision, repeatability and wide range of the applicability of liquid needle drop deposition technique.