The Stellar Merger Scenario for Black Holes in the Pair-instability Gap


الملخص بالإنكليزية

The recent detection of GW190521 stimulated ideas on how to populate the predicted black hole pair-instability mass gap. One proposed scenario is the dynamical merger of two stars below the pair instability regime forming a star with a small core and an over-sized envelope. We explore this scenario with detailed stellar evolution calculations, starting with ad-hoc initial conditions enforcing no core growth during the merger. We outline the main challenges this scenario has to overcome, in particular the requirement to retain enough of its mass at merger time, in the subsequent evolution, and at core-collapse. We found that these massive merger products are likely helium-rich, and spend most of their remaining lifetime within regions of the Herzsprung-Russell diagram where envelope instabilities akin to luminous blue variable (LBV) eruptions are expected. An energetic estimate of the amount of mass loss neglecting the back-reaction of the star suggests that the total amount of mass that can be removed at low metallicity is . 1 M . This is small enough that at core-collapse our models are retaining sufficient mass to form black holes in the pair-instability gap similar to the recent ones detected by LIGO/Virgo. However, mass loss at the time of merger and the neutrino-driven mass loss at core collapse still need to be quantified for these models in order to confirm the viability of this scenario.

تحميل البحث