The Delayed-Choice Quantum Eraser Leaves No Choice


الملخص بالإنكليزية

A realizable delayed-choice quantum eraser, using a modified Mach-Zehnder (MZ) interferometer and polarization entangled photons, is theoretically analyzed here. The signal photon goes through a modified MZ interferometer, and the polarization of the idler photon provides path information for the signal photon. The setup is very similar to the delayed-choice quantum eraser experimentally studied by the Vienna group. In the class of quantum erasers with discrete output states, it is easy to see that the delayed mode leaves no choice for the experimenter. The which-way information is always erased, and every detected signal photon fixes the polarization state of the idler, and thus gives information on precisely how the signal photon traversed the two paths. The analysis shows that the Vienna delayed-choice quantum eraser is the first experimental demonstration of the fact that the delayed mode leaves no choice for the experimenter, and the which-way information is always erased. Additionally it is shown that this argument holds even in a conventional two-slit quantum eraser. Every photon registered anywhere on the screen, fixes the state of the two-state which-way detector in a unique mutually unbiased basis. In the delayed-choice quantum eraser experiments, the role of mutually unbiased basis sets for the which-way detector, has been overlooked till now.

تحميل البحث