Study of self-interaction errors in density functional predictions of dipole polarizabilities and ionization energies of water clusters using Perdew-Zunger and locally scaled self-interaction corrected methods


الملخص بالإنكليزية

We studied the effect of self-interaction error (SIE) on the static dipole polarizabilities of water clusters modelled with three increasingly sophisticated, non-empirical density functional approximations (DFAs), viz. the local spin density approximation (LDA), the Perdew-Burke-Ernzherof (PBE) generalized-gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA, using the Perdew-Zunger self-interaction-correction (PZ-SIC) energy functional in the Fermi-Lowdin orbital SIC (FLO-SIC) framework. Our results show that while all three DFAs overestimate the cluster polarizabilities, the description systematically improves from LDA to PBE to SCAN. The self-correlation free SCAN predicts polarizabilities quite accurately with a mean absolute error (MAE) of 0.58 Bohr$^3$ with respect to coupled cluster singles and doubles (CCSD) values. Removing SIE using PZ-SIC correctly reduces the DFA polarizabilities, but over-corrects, resulting in underestimated polarizabilities in SIC-LDA, -PBE, and -SCAN. Finally, we applied a recently proposed local-scaling SIC (LSIC) method using a quasi self-consistent scheme and using the kinetic energy density ratio as an iso-orbital indicator. The results show that the LSIC polarizabilities are in excellent agreement with mean absolute error of 0.08 Bohr$^3$ for LSIC-LDA and 0.06 Bohr$^3$ for LSIC-PBE with most recent CCSD polarizabilities. Likewise, the ionization energy estimates as an absolute of highest occupied energy eigenvalue predicted by LSIC are also in excellent agreement with CCSD(T) ionization energies with MAE of 0.4 eV for LSIC-LDA and 0.04 eV for LSIC-PBE. The LSIC-LDA predictions of ionization energies are comparable to the reported GW ionization energies while the LSIC-PBE ionization energies are more accurate than reported GW results.

تحميل البحث