The characteristics of wall recycling with different divertor configurations were investigated in this study, focusing on the observations of the spatial distributions of deuterium atomic emissions in the Balmer series (D_{alpha}, D_{beta}, D_{gamma}, and D_{delta}) with different magnetic field configurations in the Experimental Advanced Superconducting Tokamak. The observed D_{alpha} and D_{beta} emissions were primarily relatively close to the divertor targets, while the D_{gamma} and D_{delta} emissions were primarily relatively close to the X-point. The distributions of the emissions close to the divertor targets and X-point changed differently depending on the divertor configuration. These experimental results indicate that the linear comparison of parameters based on an assumption of similarity of profile shapes in different configurations is insufficient for understanding particle recycling in divertor plasmas. This is because the shape of the density profile of the recycled deuterium atoms and/or the electron density and temperature may change when the magnetic configuration is altered.