The identification of the electromagnetic counterpart candidate ZTF19abanrhr to the binary black hole merger GW190521 opens the possibility to infer cosmological parameters from this standard siren with a uniquely identified host galaxy. The distant merger allows for cosmological inference beyond the Hubble constant. Here we show that the three-dimensional spatial location of ZTF19abanrhr calculated from the electromagnetic data remains consistent with the updated sky localization of GW190521 provided by the LIGO-Virgo Collaboration. If ZTF19abanrhr is associated with the GW190521 merger and assuming a flat wCDM model we find that $H_0 =48^{+24}_{-10}$ km/s/Mpc, $Omega_m =0.39^{+0.38}_{-0.29}$, and $w_0 = -1.29^{+0.63}_{-0.50}$ (median and 68% credible interval). If we use the Hubble constant value inferred from another gravitational-wave event, GW170817, as a prior for our analysis, together with assumption of a flat ${Lambda}$CDM and the model-independent constraint on the physical matter density ${omega}_m$ from Planck, we find $H_0 = 69.1^{8.7}_{-6.0}$ km/s/Mpc.