We show that within any strong orbit equivalent class, there exist minimal subshifts with arbitrarily low superlinear complexity. This is done by proving that for any simple dimension group with unit $(G,G^+,u)$ and any sequence of positive numbers $(p_n)_{ninmathbb{N}}$ such that $lim n/p_n=0$, there exist a minimal subshift whose dimension group is order isomorphic to $(G,G^+,u)$ and whose complexity function grows slower than $p_n$. As a consequence, we get that any Choquet simplex can be realized as the set of invariant measures of a minimal Toeplitz subshift whose complexity grows slower than $p_n$.