We propose a novel joint activity, channel, and data estimation (JACDE) scheme for cell-free multiple-input multiple-output (MIMO) systems compliant with fifth-generation (5G) new radio (NR) orthogonal frequency-division multiplexing (OFDM) signaling. The contribution aims to allow significant overhead reduction of cell-free MIMO systems by enabling grant-free access, while maintaining moderate throughput per user. To that end, we extend the conventional MIMO OFDM protocol so as to incorporate activity detection capability without resorting to spreading informative data symbols, in contrast with related work which typically relies on signal spreading. Our method leverages a Bayesian message passing scheme based on Gaussian approximation, which jointly performs active user detection (AUD), channel estimation (CE), and multi-user detection (MUD), incorporating also a well-structured low-coherent pilot design based on frame theory, which mitigates pilot contamination, and finally complemented with a detector empowered by bilinear message passing. The efficacy of the resulting JACDE-based grant-free access scheme without spreading data sequences is demonstrated by simulation results, which are shown to significantly outperform the current state-of-the-art and approach the performance of an idealized (genie-aided) scheme in which user activity and channel coefficients are perfectly known.