Size-dependent particle migration and trapping in 3D microbubble streaming flows


الملخص بالإنكليزية

Acoustically actuated sessile bubbles can be used as a tool to manipulate microparticles, vesicles and cells. In this work, using acoustically actuated sessile semi-cylindrical microbubbles, we demonstrate experimentally that finite-sized microparticles undergo size-sensitive migration and trapping towards specific spatial positions in three dimensions with high reproducibility. The particle trajectories are successfully reproduced by passive advection of the particles in a steady three-dimensional streaming flow field augmented with volume exclusion from the confining boundaries. For different particle sizes, this volume exclusion mechanism leads to three regimes of qualitatively different migratory behavior, suggesting applications for separating, trapping, and sorting of particles in three dimensions.

تحميل البحث