The boson and fermion particle masses are calculated in a finite quantum field theory. The field theory satisfies Poincare invariance, unitarity and microscopic causality, and all loop graphs are finite to all orders of perturbation theory. The infinite derivative nonlocal field interactions are regularized with a mass (length) scale parameter $Lambda_i$. The $W$, $Z$ and Higgs boson masses are calculated from finite one-loop self-energy graphs. The $W^{pm}$ mass is predicted to be $M_W=80.05$ GeV, and the higher order radiative corrections to the Higgs boson mass $m_H=125$ GeV are damped out above the regulating mass scale parameter $Lambda_H=1.57$ TeV. The three generations of quark and lepton masses are calculated from finite one-loop self-interactions, and there is an exponential spacing in mass between the quarks and leptons.