We present a quantum algorithm for simulation of quantum field theory in the light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization framework. As a demonstration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBMQ Vigo chip. We consider two implementations based on different encodings of physical states, and propose a development that may lead to quantum advantage. This is the first time that the light-front approach to quantum field theory has been used to enable simulation of a real physical system on a quantum computer.