A non-linear mathematical model for the X-ray variability of the microquasar GRS 1515+105 -- III: Low-frequency Quasi Periodic Oscillations


الملخص بالإنكليزية

The X-ray emission from the microquasar GRS 1515+105 shows, together with a very complex variability on different time scales, the presence of low-frequency quasi periodic oscillations (LFQPO) at frequencies lower than 30 Hz. In this paper, we demonstrate that these oscillations can be consistently and naturally obtained as solutions of a system of two ordinary differential equations that is able to reproduce almost all variability classes of GRS 1515+105. We modified the Hindmarsh-Rose model and obtained a system with two dynamical variables x(t), y(t), where the first one represents the X-ray flux from the source, and an input function J(t), whose mean level J_0 and its time evolution is responsible of the variability class. We found that for values of J_0 around the boundary between the unstable and the stable interval, where the equilibrium points are of spiral type, one obtain an oscillating behaviour in the model light curve similar to the observed ones with a broad Lorentzian feature in the power density spectrum and, occasionally, with one or two harmonics. Rapid fluctuations of J(t), as those originating from turbulence, stabilize the low-frequency quasi periodic oscillations resulting in a slowly amplitude modulated pattern.To validate the model we compared the results with real RXTE data which resulted remarkably similar to those obtained from the mathematical model. Our results allow us to favour an intrinsic hypothesis on the origin of LFQPOs in accretion discs ultimately related to the same mechanism responsible for the spiking limit cycle.

تحميل البحث