Minimizing the number of edges in $K_{s,t}$-saturated bipartite graphs


الملخص بالإنكليزية

This paper considers an edge minimization problem in saturated bipartite graphs. An $n$ by $n$ bipartite graph $G$ is $H$-saturated if $G$ does not contain a subgraph isomorphic to $H$ but adding any missing edge to $G$ creates a copy of $H$. More than half a century ago, Wessel and Bollobas independently solved the problem of minimizing the number of edges in $K_{(s,t)}$-saturated graphs, where $K_{(s,t)}$ is the `ordered complete bipartite graph with $s$ vertices from the first color class and $t$ from the second. However, the very natural `unordered analogue of this problem was considered only half a decade ago by Moshkovitz and Shapira. When $s=t$, it can be easily checked that the unordered variant is exactly the same as the ordered case. Later, Gan, Korandi, and Sudakov gave an asymptotically tight bound on the minimum number of edges in $K_{s,t}$-saturated $n$ by $n$ bipartite graphs, which is only smaller than the conjecture of Moshkovitz and Shapira by an additive constant. In this paper, we confirm their conjecture for $s=t-1$ with the classification of the extremal graphs. We also improve the estimates of Gan, Korandi, and Sudakov for general $s$ and $t$, and for all sufficiently large $n$.

تحميل البحث