Unified Theory of Quantum Crystalline Symmetries


الملخص بالإنكليزية

Symmetry groups are projectively represented in quantum mechanics, and crystalline symmetries are fundamental in condensed matter physics. Here, we systematically present a unified theory of quantum mechanical space groups from two complementary aspects. First, we provide a decomposition form for the space-group factor systems to characterize all quantum space groups. It consists of three factors, the factor system for the translation subgroup $L$, an in-homogeneous factor system for the point group $P$, and a factor connecting $L$ and $P$. The three factors satisfy three consistency equations, which are exactly solvable and can completely exhaust all factor systems for space groups. Second, since factors systems are classified by the second cohomology group, we show the (co)homology groups for space groups can be derived from Borels equivariant (co)homology theory, which leads to an algorithm that can compute all (co)homology groups for space groups. To demonstrate the general theory, we explicitly present quantum wallpaper groups with the $mathbb{Z}_2$ gauge group. Furthermore, as a primitive application, we find the time-reversal invariant quantum space groups with inversion symmetry can lead to a novel clifford band theory, where each band is fourfold degenerate to represent certain real Clifford algebras with topologically nontrivial pinor structures over the Brillouin zone. Our work serves as a foundation for exploring quantum mechanical space groups, and can find applications in spin liquids, unconventional superconductors, and artificial lattice systems, including cold atoms, photonic and phononic crystals, and even LC electric circuit networks.

تحميل البحث