Para-Kahler-Einstein 4-manifolds and non-integrable twistor distributions


الملخص بالإنكليزية

We study the local geometry of 4-manifolds equipped with a emph{para-Kahler-Einstein} (pKE) metric, a special type of split-signature pseudo-Riemannian metric, and their associated emph{twistor distribution}, a rank 2 distribution on the 5-dimensional total space of the circle bundle of self-dual null 2-planes. For pKE metrics with nonvanishing Einstein constant this twistor distribution has exactly two integral leaves and is `maximally non-integrable on their complement, a so-called (2,3,5)-distribution. Our main result establishes a simple correspondence between the anti-self-dual Weyl tensor of a pKE metric with non-vanishing Einstein constant and the Cartan quartic of the associated twistor distribution. This will be followed by a discussion of this correspondence for general split-signature metrics which is shown to be much more involved. We use Cartans method of equivalence to produce a large number of explicit examples of pKE metrics with nonvanishing Einstein constant whose anti-self-dual Weyl tensor have special real Petrov type. In the case of real Petrov type $D,$ we obtain a complete local classification. Combined with the main result, this produces twistor distributions whose Cartan quartic has the same algebraic type as the Petrov type of the constructed pKE metrics. In a similar manner, one can obtain twistor distributions with Cartan quartic of arbitrary algebraic type. As a byproduct of our pKE examples we naturally obtain para-Sasaki-Einstein metrics in five dimensions. Furthermore, we study various Cartan geometries naturally associated to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically distinguished cases the corresponding emph{Cartan connections} satisfy the Yang-Mills equations. We then provide explicit examples of such Yang-Mills Cartan connections.

تحميل البحث