A kinematic approach for the identification of flow instabilities is proposed. By defining a flow instability in the Lagrangian frame as the increased folding of lines of fluid particles, subtle perturbations and unstable growth thereof are detected early based solely on the curvature change of material lines over finite time. The material line curvature is objective, parametrization independent, and can be applied to flows of general complexity without knowledge of the base flow. An analytic connection between the growth of Eulerian velocity modes perturbing a general shear flow and the induced flow map and Lagrangian curvature change is derived. The approach is verified to capture instabilities promptly in a temporally developing jet flow, an unstable separated shear flow over a cambered airfoil, and in the onset of a wake instability behind a circular cylinder.