Analysis of a new implicit solver for a semiconductor model


الملخص بالإنكليزية

We present and analyze a new iterative solver for implicit discretizations of a simplified Boltzmann-Poisson system. The algorithm builds on recent work that incorporated a sweeping algorithm for the Vlasov-Poisson equations as part of nested inner-outer iterative solvers for the Boltzmann-Poisson equations. The new method eliminates the need for nesting and requires only one transport sweep per iteration. It arises as a new fixed-point formulation of the discretized system which we prove to be contractive for a given electric potential. We also derive an accelerator to improve the convergence rate for systems in the drift-diffusion regime. We numerically compare the efficiency of the new solver, with and without acceleration, with a recently developed nested iterative solver.

تحميل البحث