MIRACLES: atmospheric characterization of directly imaged planets and substellar companions at 4-5 $mu$m. II. Constraints on the mass and radius of the enshrouded planet PDS 70 b


الملخص بالإنكليزية

The circumstellar disk of PDS 70 hosts two forming planets, which are actively accreting gas from their environment. In this work, we report the first detection of PDS 70 b in the Br$alpha$ and $M$ filters with VLT/NACO, a tentative detection of PDS 70 c in Br$alpha$, and a reanalysis of archival NACO $L$ and SPHERE $H23$ and $K12$ imaging data. The near side of the disk is also resolved with the Br$alpha$ and $M$ filters, indicating that scattered light is non-negligible at these wavelengths. The spectral energy distribution of PDS 70 b is well described by blackbody emission, for which we constrain the photospheric temperature and photospheric radius to $T_mathrm{eff}=1193 pm 20$ K and $R=3.0 pm 0.2$ $R_mathrm{J}$. The relatively low bolometric luminosity, $log(L/L_odot) = -3.79 pm 0.02$, in combination with the large radius, is not compatible with standard structure models of fully convective objects. With predictions from such models, and adopting a recent estimate of the accretion rate, we derive a planetary mass and radius in the range of $M_mathrm{p}approx 0.5-1.5$ $M_mathrm{J}$ and $R_mathrm{p}approx 1-2.5$ $R_mathrm{J}$, independently of the age and post-formation entropy of the planet. The blackbody emission, large photospheric radius, and the discrepancy between the photospheric and planetary radius suggests that infrared observations probe an extended, dusty environment around the planet, which obscures the view on its molecular composition. Finally, we derive a rough upper limit on the temperature and radius of potential excess emission from a circumplanetary disk, $T_mathrm{eff}lesssim256$ K and $Rlesssim245$ $R_mathrm{J}$, but we do find weak evidence that the current data favors a model with a single blackbody component.

تحميل البحث