Stability and safety are two important aspects in safety-critical control of dynamical systems. It has been a well established fact in control theory that stability properties can be characterized by Lyapunov functions. Reachability properties can also be naturally captured by Lyapunov functions for finite-time stability. Motivated by safety-critical control applications, such as in autonomous systems and robotics, there has been a recent surge of interests in characterizing safety properties using barrier functions. Lyapunov and barrier functions conditions, however, are sometimes viewed as competing objectives. In this paper, we provide a unified theoretical treatment of Lyapunov and barrier functions in terms of converse theorems for stability properties with safety guarantees and reach-avoid-stay type specifications. We show that if a system (modeled as a perturbed dynamical system) possesses a stability with safety property, then there exists a smooth Lyapunov function to certify such a property. This Lyapunov function is shown to be defined on the entire set of initial conditions from which solutions satisfy this property. A similar but slightly weaker statement is made for reach-avoid-stay specifications. We show by a simple example that the latter statement cannot be strengthened without additional assumptions.