Towards fully automatized GW band structure calculations: What we can learn from 60.000 self-energy evaluations


الملخص بالإنكليزية

We analyze a data set comprising 370 GW band structures composed of 61716 quasiparticle (QP) energies of two-dimensional (2D) materials spanning 14 crystal structures and 52 elements. The data results from PAW plane wave based one-shot G$_0$W$_0$@PBE calculations with full frequency integration. We investigate the distribution of key quantities like the QP self-energy corrections and renormalization factor $Z$ and explore their dependence on chemical composition and magnetic state. The linear QP approximation is identified as a significant error source and propose schemes for controlling and drastically reducing this error at low computational cost. We analyze the reliability of the $1/N_text{PW}$ basis set extrapolation and find that is well-founded with narrow distributions of $r^2$ peaked very close to 1. Finally, we explore the validity of the scissors operator approximation concluding that it is generally not valid for reasonable error tolerances. Our work represents a step towards the development of automatized workflows for high-throughput G$_0$W$_0$ band structure calculations for solids.

تحميل البحث