The Murchison Widefield Array (MWA) recorded cite{Mondal-2020} impulsive radio events in the quiet solar corona at frequencies 98, 120, 132, and 160 MHz. We propose that these radio events are the direct manifestation of dark matter annihilation events within the axion quark nugget (AQN) framework. It has been argued cite{Zhitnitsky:2017rop,Raza:2018gpb} that the AQN annihilation events in the quiet solar corona can be identified with the nanoflares conjectured by Parker cite{Parker-1983}. We further support this claim by demonstrating that observed impulsive radio events cite{Mondal-2020}, including their rate of appearance, their temporal and spatial distributions and their energetics, are matching the generic consequences of AQN annihilations in the quiet corona. We propose to test this idea by analyzing the correlated clustering of impulsive radio events in different frequency bands. These correlations are expressed in terms of the time delays between radio events in different frequency bands, measured in seconds. We also make generic predictions for low (80 and 89 MHz) and high (179, 196, 217 and 240 MHz) frequency bands, that have been recorded, but not published, by cite{Mondal-2020}. We finally suggest to test our proposal by studying possible cross-correlation between MWA radio signals and Solar Orbiter recording of extreme UV photons (a.k.a. campfires).