Spectral linear matrix inequalities


الملخص بالإنكليزية

We prove, under a certain representation theoretic assumption, that the set of real symmetric matrices, whose eigenvalues satisfy a linear matrix inequality, is itself a spectrahedron. The main application is that derivative relaxations of the positive semidefinite cone are spectrahedra. From this we further deduce statements on their Wronskians. These imply that Newtons inequalities, as well as a strengthening of the correlation inequalities for hyperbolic polynomials, can be expressed as sums of squares.

تحميل البحث