CP violation in neutral lepton transition dipole moment


الملخص بالإنكليزية

The $CP$ violation in the neutrino transition electromagnetic dipole moment is discussed in the context of the Standard Model with an arbitrary number of right-handed singlet neutrinos. A full one-loop calculation of the neutrino electromagnetic form factors is performed in the Feynman gauge. A non-zero $CP$ asymmetry is generated by a required threshold condition for the neutrino masses along with non-vanishing $CP$ violating phases in the lepton flavour mixing matrix. We follow the paradiagm of $CP$ violation in neutrino oscillations to parametrise the flavour mixing contribution into a series of Jarlskog-like parameters. This formalism is then applied to a minimal seesaw model with two heavy right-handed neutrinos denoted $N_1$ and $N_2$. We observe that the $CP$ asymmetries for decays into light neutrinos $Nto ugamma$ are extremely suppressed, maximally around $10^{-17}$. However the $CP$ asymmetry for $N_2 to N_1 gamma$ can reach of order unity. Even if the Dirac $CP$ phase $delta$ is the only source of $CP$ violation, a large $CP$ asymmetry around $10^{-5}$-$10^{-3}$ is comfortably achieved.

تحميل البحث