The technique of passive daytime radiative cooling (PDRC) is used to cool an object down by simultaneously reflecting sunlight and thermally radiating heat to the cold outer space through the Earths atmospheric window. However, for practical applications, current PDRC materials are facing unprecedented challenges such as complicated and expensive fabrication approaches and performance degradation arising from surface contamination. Here, we develop a scalable paper-based material with excellent self-cleaning and self-cooling capabilities, through air-spraying ethanolic polytetrafluoroethylene (PTFE) microparticles suspensions embedded within the micropores of the paper. The formed superhydrophobic PTFE coating not only protects the paper from water wetting and dust contamination for real-life applications but also reinforces its solar reflectance by sunlight backscattering. The paper fibers, when enhanced with PTFE particles, efficiently reflect sunlight and strongly radiate heat through the atmospheric window, resulting in a sub-ambient cooling performance of 5$^{circ}$C and radiative cooling power of 104 W/m$^2$ under direct solar irradiance of 834 W/m$^2$ and 671 W/m$^2$, respectively. The self-cleaning surface of the cooling paper extends its lifespan and keep its good cooling performance for outdoor applications. Additionally, dyed papers are experimentally studied for broad engineering applications. They can absorb appropriate visible wavelengths to display specific colors and effectively reflect near-infrared lights to reduce solar heating, which synchronously achieves effective radiative cooling and aesthetic varieties in a cost-effective, scalable, and energy-efficient way.