We construct a theory for the semiclassical dynamics of superconducting quasiparticles by following their wave-packet motion and reveal rich contents of Berry curvature effects in the phase-space spanned by position and momentum. These Berry curvatures are traced back to the characteristics of superconductivity, including the nontrivial momentum-space geometry of superconducting pairing, the real-space supercurrent, and the charge dipole of quasiparticles. The Berry-curvature effects strongly influence the spectroscopic and transport properties of superconductors, such as the local density of states and the thermal Hall conductivity. As a model illustration, we apply the theory to study the twisted bilayer graphene with a $d_{x^{2}+y^{2}}+id_{xy}$ superconducting gap function, and demonstrate Berry-curvature induced effects.