Curvature-slope correlation of nuclear symmetry energy and its imprints on the crust-core transition, radius and tidal deformability of canonical neutron stars


الملخص بالإنكليزية

Background: The nuclear symmetry energy $E_{sym}(rho)$ encodes information about the energy necessary to make nuclear systems more neutron-rich. While its slope parameter L at the saturation density $rho_0$ of nuclear matter has been relatively well constrained by recent astrophysical observations and terrestrial nuclear experiments, its curvature $K_{rm{sym}}$ characterizing the $E_{sym}(rho)$ around $2rho_0$ remains largely unconstrained. Over 520 calculations for $E_{sym}(rho)$ using various nuclear theories and interactions in the literature have predicted several significantly different $K_{rm{sym}}-L$ correlations. Purpose: If a unique $K_{rm{sym}}-L$ correlation of $E_{sym}(rho)$ can be firmly established, it will enable us to progressively better constrain the high-density behavior of $E_{sym}(rho)$ using the available constraints on its slope parameter L. We investigate if and by how much the different $K_{rm{sym}}-L$ correlations may affect neutron star observables. Method: A meta-model of nuclear Equation of States (EOSs) with three representative $K_{rm{sym}}-L$ correlation functions is used to generate multiple EOSs for neutron stars. We then examine effects of the $K_{rm{sym}}-L$ correlation on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical neutron stars. Results:The $K_{rm{sym}}-L$ correlation affects significantly both the crust-core transition density and pressure. It also has strong imprints on the radius and tidal deformability of canonical neutron stars especially at small L values. The available data from LIGO/VIRGO and NICER set some useful limits for the slope L but can not distinguish the three representative $K_{rm{sym}}-L$ correlations considered.

تحميل البحث