Inverse Design of Composite Metal Oxide Optical Materials based on Deep Transfer Learning


الملخص بالإنكليزية

Optical materials with special optical properties are widely used in a broad span of technologies, from computer displays to solar energy utilization leading to large dataset accumulated from years of extensive materials synthesis and optical characterization. Previously, machine learning models have been developed to predict the optical absorption spectrum from a materials characterization image or vice versa. Herein we propose TLOpt, a transfer learning based inverse optical materials design algorithm for suggesting material compositions with a desired target light absorption spectrum. Our approach is based on the combination of a deep neural network model and global optimization algorithms including a genetic algorithm and Bayesian optimization. A transfer learning strategy is employed to solve the small dataset issue in training the neural network predictor of optical absorption spectrum using the Magpie materials composition descriptor. Our extensive experiments show that our algorithm can inverse design the materials composition with stoichiometry with high accuracy.

تحميل البحث