We study the combinatorial Reeb flow on the boundary of a four-dimensional convex polytope. We establish a correspondence between combinatorial Reeb orbits for a polytope, and ordinary Reeb orbits for a smoothing of the polytope, respecting action and Conley-Zehnder index. One can then use a computer to find all combinatorial Reeb orbits up to a given action and Conley-Zehnder index. We present some results of experiments testing Viterbos conjecture and related conjectures. In particular, we have found some new examples of polytopes with systolic ratio $1$.